AUGUST 2023
EBS 357
INTRODUCTORY ATOMIC PHYSICS,
HEAT AND OPTICS
1 HOUR 30 MINUTES

Candidate's Index Number				
Signature:				

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

COLLEGES OF EDUCATION FOUR-YEAR BACHELOR OF EDUCATION (B.ED) THIRD YEAR, END-OF-FIRST SEMESTER EXAMINATION, AUGUST 2023

17TH AUGUST 2023

INTRODUCTORY ATOMIC PHYSICS, HEAT AND OPTICS

9:30 AM - 11:00 AM

SECTION B [40 MARKS]

Answer TWO questions only from this Section.

a. The Rydberg equation is generally expressed as:

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right); n_i, n_f = 1, 2, 3, \dots \dots n_i > n_f$$

where R is Rydberg constant.

i. Calculate the wavelength that corresponds to the transition $n_i = 10$ to $n_f = 2$ for hydrogen atom.

[6 marks]

ii. What is the name given to this series?

[2 marks]

iii. where can it be found on the em spectrum?

[2 marks]

b.

i. State Charles's law.

[2 marks]

ii. Represent this on a PV-diagram.

[2 marks]

c. Both the internal energy U of an ideal gas and its volume V are doubled.

i. Calculate the new pressure as a result of these changes.

[4 marks]

ii. Comment on your answer.

[2 marks]

2.						
	a.	i.	Explain the term Ground State of an atom.	[2 marks]		
		ii.	Calculate the energy of a photon emitted by HeNe laser light radiating at a wavelength of 633 nm.	[4 marks]		
tage y	b.	i.	State two characteristics of X-ray.	[2 marks]		
		ii.	The maximum voltage which a certain X-ray tube can withstand is 95 kV. Calculate the shortest wavelength produced by the tube.	[5 marks]		
	c.	i.	Find the wavelength of the electromagnetic radiation that is emitted from an electron which relaxes from $n = 5$ to $n = 1$ in a hydrogen atom.	[5 marks]		
		ii.	What is the name of the resulting spectral series in the transition?	[2 marks]		
3.						
	a.	i.	Explain these processes associated with the production of X-rays: X-ray fluorescence and Bremsstrahlung/braking radiation.	[4 marks]		
		ii.	The maximum voltage which an X-ray tube can withstand is 75kV. Calculate the shortest wavelength produced by the tube.	[4 marks]		
	b.	i.	Under what condition is Boyle's law valid?	[2 marks]		
		ii.	A gas at 100 kPa at 37.0°C fills a flexible container with an initial volume of 2.50 m ³ . If the temperature is increased to 57.0°C and the pressure incre to 150 kPa, calculate the new volume?	ased [4 marks]		
	c.	i.	What is interference of light?	[2 marks]		
		ii.	List two differences between interference and diffraction.	[4 marks]		
4.						
	a.	Under what condition will an atom absorb radiation? The measured frequency of a photon is given as 6.0 x 10 ¹⁵ Hz. Calculate the energy of such a photon.				
	bí.					
	c.	i.	State the Zeroth law of Thermodynamics.	[2 marks]		
		ii.	Give one practical application where this law is applied and used.	[2 marks		
	d.	i.	Give two properties of light.	[2 marks]		
		iî.	Give the full expression for the acronym LASER.	[2 marks]		
		iii.	Light with a wavelength of 511 nm forms a diffraction pattern after passing through a single slit of width 2.50×10^{-6} m. Calculate the angle associated the second dark fringe above the central bright fringe.			

Physical Constants $c = 3 \times 10^8 \text{ ms}^{-1}$ $e = 1.6 \times 10^{-19} \text{ C}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$ Rydberg constant $R = 1.097 \times 10^7 \text{ m}^{-1}$ Planck's constant $h = 6.62 \times 10^{-34} \text{ Js} = 4.14 \times 10^{-15} \text{ eV}$ fuch a hat Page 2 of 2